f08 — Least-squares and Eigenvalue Problems (LAPACK) f08afc

NAG C Library Function Document

nag_dorgqr (f08afc)

1 Purpose

nag_dorgqr (f08afc) generates all or part of the real orthogonal matrix () from a QR factorization
computed by nag_dgeqrf (f08aec) or nag_dgeqpf (f08bec).

2 Specification

void nag_dorgqr (Nag_OrderType order, Integer m, Integer n, Integer k, double al[],
Integer pda, const double tau[], NagError *fail)

3 Description

nag_dorgqr (f08afc) is intended to be used after a call to nag_dgeqrf (f08aec) or nag dgeqpf (f08bec),
which perform a Q)R factorization of a real matrix A. The orthogonal matrix () is represented as a product
of elementary reflectors.

This function may be used to generate () explicitly as a square matrix, or to form only its leading columns.

Usually @ is determined from the QR factorization of an m by p matrix A with m > p. The whole of @
may be computed by:

nag_dorgqr (order,m,m,p,&a,pda,tau,&fail)
(note that the array a must have at least m columns) or its leading p columns by:
nag_dorgqr (order,m,p,p,&a,pda,tau,&fail)

The columns of @) returned by the last call form an orthonormal basis for the space spanned by the
columns of A; thus nag_dgeqrf (f08aec) followed by nag_dorgqr (f08afc) can be used to orthogonalise the
columns of A.

The information returned by the QR factorization functions also yields the QR factorization of the leading
k columns of A, where k < p. The orthogonal matrix arising from this factorization can be computed by:

nag_dorgqr (order,m,m,k,&a,pda,tau,&fail)
or its leading k columns by:

nag_dorgqr (order,m,k,k,&a,pda,tau,&fail)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] 08afe. 1

f08afc NAG C Library Manual

2: m — Integer Input
On entry: m, the order of the orthogonal matrix Q.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of matrix @) that are required.

Constraint: m > n > 0.

4: k — Integer Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: n > k > 0.

5: a[dim] — double Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgeqrf
(f08aec) or nag_dgeqpf (f08bec).

On exit: the m by n matrix Q).

6: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
7: tau[dim] — const double Input
Note: the dimension, dim, of the array tau must be at least max(1, k).
On entry: further details of the elementary reflectors, as returned by nag dgeqrf (f08aec) or
nag_dgeqpf (f08bec).
8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, m = (value), n = (value).
Constraint: m > n > 0.

f08afe.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08afc

On entry, n = (value), k = (value).
Constraint: n > k > 0.

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix @) differs from an exactly orthogonal matrix by a matrix E such that
1], = O(e),

where € is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 4mnk — 2(m + n)k2 + %kﬁ; when n =k,
the number is approximately %nz(Sm —n).

The complex analogue of this function is nag zungqr (f08atc).

9 Example

To form the leading 4 columns of the orthogonal matrix @) from the QR factorization of the matrix A,
where

-0.57 —-1.28 -0.39 0.25
—-1.93 1.08 —-031 -2.14
230 024 040 -0.35
—1.93 0.64 —0.66 0.08
0.15 030 0.15 -2.13
—0.02 1.03 —-143 0.50

A=

The columns of) form an orthonormal basis for the space spanned by the columns of A.

9.1 Program Text

/* nag_dorgqr (fO8afc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>

[NP3645/7] f08afe.3

f08afc NAG C Library Manual

#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;
NagError failj;
Nag_OrderType order;
/* Arrays */
char *title=0;
double *a=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT _FAIL(fail);
Vprintf ("f08afc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("$1d%1ds*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

tau_len = MIN(m, n);

/* Allocate memory */
if (!(title = NAG_ALLOC(31, char)) ||
!'(a = NAG_ALLOC(m * n, double)) ||
! (tau = NAG_ALLOC(tau_len, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file =*/
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));
}

Vscanf ("%s*["\n] ");

/* Compute the QR factorization of A */
fO8aec(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Form the leading N columns of Q explicitly =*/
fO08afc(order, m, n, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08afc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print the leading N columns of Q only */
Vsprintf(title, "The leading %21d columns of Q\n", n);

f08afe.4 [NP3645/7]

f08 — Least-squares

x04cac(order,
title,
if (fail.code

{

}

END:

Vprintf ("Error from x0O4cac.\n%s\n",

and Eigenvalue Problems (LAPACK)

Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

0, &fail);

!= NE_NOERROR)

exit_status =
goto END;

if (title)
a) NAG_FREE(a);

if (
if (

tau)

1;

NAG_FREE (tau) ;

return exit_status;

9.2 Program Data

f08afc Example

6 4
-0.57
-1.93

2.30
-1.93

0.15
-0.02

POOORKRK

.28
.08
.24
.64
.30
.03

NAG_FREE (title);

Program Data

-0.39
-0.31
0.40
-0.66
0.15
-1.43

9.3 Program Results

fO8afc Example Program Results

0.
-2.
-0.

0.
-2.

0.

25
14
35
08
13
50

The leading 4 columns of Q

0.

0.

1 -0.
2 -0.
3
4 -0.
5
6 -0.

1
1576
5335
6358
5335
0415
0055

0.
-0.
-0.
-0.
-0.
-0.

2
6744
3861
2928
1692
1593
5064

-0.
0.
0.

-0.
0.

-0.

3
4571
2583
0165
0834
1475
8339

fail.message) ;

:Values of M and N

:End of matrix A

[eNoNoNoNoNe)

.4489
.3898
.1930
.2350
.7436
.0335

a, pda,

f08afc

[NP364

5/7]

f08afc.5 (last)

	f08afc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

